Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2316814, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38323903

RESUMO

Hypervirulent Klebsiella pneumoniae isolates have been increasingly reported worldwide, especially hypervirulent drug-resistant variants owing to the acquisition of a mobilizable virulence plasmid by a carbapenem-resistant strain. This pLVPK-like mobilizable plasmid encodes various virulence factors; however, information about its genetic stability is lacking. This study aimed to investigate the type II toxin-antitoxin (TA) modules that facilitate the virulence plasmid to remain stable in K. pneumoniae. More than 3,000 TA loci in 2,000 K. pneumoniae plasmids were examined for their relationship with plasmid cargo genes. TA loci from the RES-Xre family were highly correlated with virulence plasmids of hypervirulent K. pneumoniae. Overexpression of the RES toxin KnaT, encoded by the virulence plasmid-carrying RES-Xre locus knaAT, halts the cell growth of K. pneumoniae and E. coli, whereas co-expression of the cognate Xre antitoxin KnaA neutralizes the toxicity of KnaT. knaA and knaT were co-transcribed, representing the characteristics of a type II TA module. The knaAT deletion mutation gradually lost its virulence plasmid in K. pneumoniae, whereas the stability of the plasmid in E. coli was enhanced by adding knaAT, which revealed that the knaAT operon maintained the genetic stability of the large virulence plasmid in K. pneumoniae. String tests and mouse lethality assays subsequently confirmed that a loss of the virulence plasmid resulted in reduced pathogenicity of K. pneumoniae. These findings provide important insights into the role of the RES-Xre TA pair in stabilizing virulence plasmids and disseminating virulence genes in K. pneumoniae.


Assuntos
Antitoxinas , Klebsiella pneumoniae , Animais , Camundongos , Virulência/genética , Antitoxinas/genética , Escherichia coli/genética , Plasmídeos/genética , Antibacterianos , beta-Lactamases/genética
2.
Nucleic Acids Res ; 52(D1): D732-D737, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37870467

RESUMO

ICEberg 3.0 (https://tool2-mml.sjtu.edu.cn/ICEberg3/) is an upgraded database that provides comprehensive insights into bacterial integrative and conjugative elements (ICEs). In comparison to the previous version, three key enhancements were introduced: First, through text mining and manual curation, it now encompasses details of 2065 ICEs, 607 IMEs and 275 CIMEs, including 430 with experimental support. Secondly, ICEberg 3.0 systematically categorizes cargo gene functions of ICEs into six groups based on literature curation and predictive analysis, providing a profound understanding of ICEs'diverse biological traits. The cargo gene prediction pipeline is integrated into the online tool ICEfinder 2.0. Finally, ICEberg 3.0 aids the analysis and exploration of ICEs from the human microbiome. Extracted and manually curated from 2405 distinct human microbiome samples, the database comprises 1386 putative ICEs, offering insights into the complex dynamics of Bacteria-ICE-Cargo networks within the human microbiome. With the recent updates, ICEberg 3.0 enhances its capability to unravel the intricacies of ICE biology, particularly in the characterization and understanding of cargo gene functions and ICE interactions within the microbiome. This enhancement may facilitate the investigation of the dynamic landscape of ICE biology and its implications for microbial communities.


Assuntos
Bactérias , Conjugação Genética , Bases de Dados Genéticas , Humanos , Bactérias/genética , Bases de Dados Factuais , Elementos de DNA Transponíveis , Microbiota
3.
Nucleic Acids Res ; 52(D1): D784-D790, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37897352

RESUMO

TADB 3.0 (https://bioinfo-mml.sjtu.edu.cn/TADB3/) is an updated database that provides comprehensive information on bacterial types I to VIII toxin-antitoxin (TA) loci. Compared with the previous version, three major improvements are introduced: First, with the aid of text mining and manual curation, it records the details of 536 TA loci with experimental support, including 102, 403, 8, 14, 1, 1, 3 and 4 TA loci of types I to VIII, respectively; Second, by leveraging the upgraded TA prediction tool TAfinder 2.0 with a stringent strategy, TADB 3.0 collects 211 697 putative types I to VIII TA loci predicted in 34 789 completely sequenced prokaryotic genomes, providing researchers with a large-scale dataset for further follow-up analysis and characterization; Third, based on their genomic locations, relationships of 69 019 TA loci and 60 898 mobile genetic elements (MGEs) are visualized by interactive networks accessible through the user-friendly web page. With the recent updates, TADB 3.0 may provide improved in silico support for comprehending the biological roles of TA pairs in prokaryotes and their functional associations with MGEs.


Assuntos
Proteínas de Bactérias , Bases de Dados Genéticas , Sequências Repetitivas Dispersas , Sistemas Toxina-Antitoxina , Proteínas de Bactérias/genética , Genoma Bacteriano , Sistemas Toxina-Antitoxina/genética , Loci Gênicos
4.
Genome Med ; 15(1): 106, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041146

RESUMO

BACKGROUND: Klebsiella pneumoniae is a notorious clinical pathogen and frequently carries various plasmids, which are the main carriers of antimicrobial resistance and virulence genes. In comparison to self-transmissible conjugative plasmids, mobilizable plasmids have received much less attention due to their defects in conjugative elements. However, the contribution of mobilizable plasmids to the horizontal transfer of antimicrobial resistance genes and virulence genes of K. pneumoniae remains unclear. In this study, the transfer, stability, and cargo genes of the mobilizable plasmids of K. pneumoniae were examined via genetic experiments and genomic analysis. METHODS: Carbapenem-resistant (CR) plasmid pHSKP2 and multidrug-resistant (MDR) plasmid pHSKP3 of K. pneumoniae HS11286, virulence plasmid pRJF293 of K. pneumoniae RJF293 were employed in conjugation assays to assess the transfer ability of mobilizable plasmids. Mimic mobilizable plasmids and genetically modified plasmids were constructed to confirm the cotransfer models. The plasmid morphology was evaluated through XbaI and S1 nuclease pulsed-field gel electrophoresis and/or complete genome sequencing. Mobilizable plasmid stability in transconjugants was analyzed via serial passage culture. In addition, in silico genome analysis of 3923 plasmids of 1194 completely sequenced K. pneumoniae was performed to investigate the distribution of the conjugative elements, the cargo genes, and the targets of the CRISPR-Cas system. The mobilizable MDR plasmid and virulence plasmid of K. pneumoniae were investigated, which carry oriT but lack other conjugative elements. RESULTS: Our results showed that mobilizable MDR and virulence plasmids carrying oriT but lacking the relaxase gene were able to cotransfer with a helper conjugative CR plasmid across various Klebsiella and Escherichia coli strains. The transfer and stability of mobilizable plasmids rather than conjugative plasmids were not interfered with by the CRISPR-Cas system of recipient strains. According to the in silico analysis, the mobilizable plasmids carry about twenty percent of acquired antimicrobial resistance genes and more than seventy-five percent of virulence genes in K. pneumoniae. CONCLUSIONS: Our work observed that a mobilizable MDR or virulence plasmid that carries oriT but lacks the relaxase genes transferred with the helper CR conjugative plasmid and mobilizable plasmids escaped from CRISPR-Cas defence and remained stable in recipients. These results highlight the threats of mobilizable plasmids as vital vehicles in the dissemination of antibiotic resistance and virulence genes in K. pneumoniae.


Assuntos
Antibacterianos , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Virulência/genética , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Escherichia coli/genética , Carbapenêmicos , beta-Lactamases/genética
5.
Research (Wash D C) ; 6: 0258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886621

RESUMO

Proteins secreted by Gram-negative bacteria are tightly linked to the virulence and adaptability of these microbes to environmental changes. Accurate identification of such secreted proteins can facilitate the investigations of infections and diseases caused by these bacterial pathogens. However, current bioinformatic methods for predicting bacterial secreted substrate proteins have limited computational efficiency and application scope on a genome-wide scale. Here, we propose a novel deep-learning-based framework-DeepSecE-for the simultaneous inference of multiple distinct groups of secreted proteins produced by Gram-negative bacteria. DeepSecE remarkably improves their classification from nonsecreted proteins using a pretrained protein language model and transformer, achieving a macro-average accuracy of 0.883 on 5-fold cross-validation. Performance benchmarking suggests that DeepSecE achieves competitive performance with the state-of-the-art binary predictors specialized for individual types of secreted substrates. The attention mechanism corroborates salient patterns and motifs at the N or C termini of the protein sequences. Using this pipeline, we further investigate the genome-wide prediction of novel secreted proteins and their taxonomic distribution across ~1,000 Gram-negative bacterial genomes. The present analysis demonstrates that DeepSecE has major potential for the discovery of disease-associated secreted proteins in a diverse range of Gram-negative bacteria. An online web server of DeepSecE is also publicly available to predict and explore various secreted substrate proteins via the input of bacterial genome sequences.

6.
Emerg Microbes Infect ; 12(2): 2256427, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672539

RESUMO

Klebsiella pneumoniae is an important human pathogen known for its resistance to carbapenem antibiotics, especially the increasing carbapenem-resistant hypervirulent variants. The carbapenem resistance is mainly caused by the carbapenemase gene blaKPC which was commonly found on the IncFII transferable plasmids in K. pneumoniae ST11 isolates in regions of China. However, the mechanisms of the plasmid-carrying blaKPC regulation by the host strain are not clear. To investigate the chromosome-encoded two-component system (TCS) that regulates the carbapenem resistance of K. pneumoniae caused by blaKPC, twenty-four TCSs of a carbapenem-resistant classical K. pneumoniae ST11 clinical isolate were knocked out. The deletion mutation of the TCS regulator cpxR exhibited increased sensitivity to carbapenem, which could be restored by complementation with cpxR in trans. Electrophoretic mobility shift, isothermal titration calorimetry and DNase I footprinting results revealed that CpxR directly bound to the promoter DNA of blaKPC and the binding was abolished by disrupting the DNA-binding domain in CpxR. The subsequent in vivo assays using the lacZ reporter system and qPCR showed that CpxR upregulates the transcription of blaKPC. Notably, CpxR was also found to activate the transfer of the blaKPC-carrying IncFII plasmid between the hypervirulent K. pneumoniae and E. coli isolates, in which CpxR promoted the transcription of the tra operon via binding to its promoter region. These results provide an important insight into the regulation of the host factor CpxR in the plasmid-carrying carbapenemase gene in the classical and hypervirulent K. pneumoniae.


Assuntos
Antibacterianos , Infecções por Klebsiella , Humanos , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Klebsiella pneumoniae , Escherichia coli/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Plasmídeos/genética , DNA
7.
J Antimicrob Chemother ; 78(4): 1066-1075, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857516

RESUMO

BACKGROUND: Bacterial toxin-antitoxin (TA) modules respond to various stressful conditions. The Gcn5-related N-acetyltransferase-type toxin (GNAT) protein encoded by the GNAT-RHH TA locus is involved in the antibiotic tolerance of Klebsiella pneumoniae. OBJECTIVES: To investigate the transcriptional mechanism of the GNAT-RHH operon kacAT under antibiotic stress. METHODS: The transcriptional level of the kacAT operon of K. pneumoniae was measured by quantitative real-time (qRT) PCR assay. The degradation of antitoxin KacA was examined by western blot and fluorescent protein. The ratio of [KacA]:[KacT] was calculated by the fluorescence intensity of KacA-eGFP and mCherry-KacT. Mathematical modelling predicted protein and transcript synthesis dynamics. RESULTS: A meropenem-induced increase in transcript levels of kacA and kacT resulted from the relief from transcriptional autoregulation of the kacAT operon. Meropenem induces the degradation of KacA through Lon protease, resulting in a reduction in the ratio of [KacA]:[KacT]. The decreased ratio causes the dissociation of the KacAT complex from its promoter region, which eliminates the repression of kacAT transcription. In addition, our dynamic model of kacAT expression regulation quantitatively reproduced the experimentally observed reduction of the [KacA]:[KacT] ratio and a large increase in kacAT transcript levels under the condition of strong promoter autorepression by the KacAT complex. CONCLUSIONS: Meropenem promotes the degradation of antitoxin by enhancing the expression of Lon protease. Degradation of antitoxin reduces the ratio of intracellular [antitoxin]:[toxin], leading to detachment of the TA complex from its promoter, and releasing repression of TA operon transcription. These results may provide an important insight into the transcriptional mechanism of GNAT-RHH TA modules under antibiotic stress.


Assuntos
Antitoxinas , Protease La , Antitoxinas/genética , Meropeném , Acetiltransferases , Protease La/metabolismo , Óperon , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
8.
Interdiscip Sci ; 15(3): 349-359, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36849628

RESUMO

The CRISPR‒Cas system acts as a bacterial defense mechanism by conferring adaptive immunity and limiting genetic reshuffling. However, under adverse environmental hazards, bacteria can employ their CRISPR‒Cas system to exchange genes that are vital for adaptation and survival. Levilactobacillus brevis is a lactic acid bacterium with great potential for commercial purposes because it can be genetically manipulated to enhance its functionality and nutritional value. Nevertheless, the CRISPR‒Cas system might interfere with the genetic modification process. Additionally, little is known about the CRISPR‒Cas system in this industrially important microorganism. Here, we investigate the prevalence, diversity, and targets of CRISPR‒Cas systems in the genus Levilactobacillus, further focusing on complete genomes of L. brevis. Using the CRISPRCasFinder webserver, we identified 801 putative CRISPR-Cas systems in the genus Levilactobacillus. Further investigation focusing on the complete genomes of L. brevis revealed 54 putative CRISPR-Cas systems. Of these, 46 were orphan CRISPRs, and eight were CRISPR‒Cas systems. The type II-A CRISPR‒Cas system is the most common in Levilactobacillus and L. brevis complete genomes. Analysis of the spacer's target showed that the CRISPR‒Cas systems of L. brevis mainly target the enterococcal plasmids. Comparative analysis of putative CRISPR-Cas loci in Levilactobacillus brevis.


Assuntos
Levilactobacillus brevis , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Bactérias , Plasmídeos/genética
9.
Sci China Life Sci ; 66(3): 626-634, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36346548

RESUMO

Type VI Secretion System (T6SS) plays significant roles in microbial activities via injecting effectors into adjacent cells or environments. T6SS increasingly gained attention due to its important influence on pathogenesis, microbial competition, etc. T6SS-associated research is explosively expanding on numerous grounds that call for an efficient resource. The SecReT6 version 3 provides comprehensive information on T6SS and the interactions between T6SS and T6SS-related proteins such as T6SS regulators and T6SS effectors. To assist T6SS researches like microbial competition and regulatory mechanisms, SecReT6 v3 developed online tools for detection and analysis of T6SS and T6SS-related proteins and estimation of T6SS-dependent killing risk. We have identified a novel T6SS regulator and T6SS-dependent killing capacity in Acinetobacter baumannii clinical isolates with the aid of SecReT6 v3. 17,212 T6SSs and plentiful T6SS-related proteins in 26,573 bacterial complete genomes were also detected, analyzed and incorporated into the database. The database is freely available at https://bioinfo-mml.sjtu.edu.cn/SecReT6/ .


Assuntos
Acinetobacter baumannii , Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano
10.
Microbiol Spectr ; 10(4): e0136422, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35863038

RESUMO

Klebsiella pneumoniae poses a critical challenge to clinical and public health. Along with conjugative plasmids, nonconjugative resistance or virulence plasmids associated with carbapenem-resistant K. pneumoniae (CRKP), hypervirulent K. pneumoniae (hvKP), and even carbapenem-resistant and hypervirulent K. pneumoniae (CR-hvKP) strains have been spreading globally. In this study, a clinical CRKP strain KP2648 was isolated, and the transferability of its plasmids was assessed using conjugation experiments. The transconjugants were characterized by polymerase chain reaction (PCR) detection, XbaI and S1-pulsed-field gel electrophoresis (PFGE), and/or whole-genome sequencing. Genetically modified IncN3 plasmids were employed to elucidate the self-transferability and the mobilization mechanisms. KP2648 has three natural plasmids: a nonconjugative IncFIB/IncHI3B virulence plasmid, a nonconjugative IncFII/IncR carbapenem-resistant plasmid, and a self-transferable IncN3 plasmid with a high conjugation frequency (7.54 ± 1.06) × 10-1. The IncN3 plasmid could mobilize the coexisting nonconjugative virulence/resistance plasmids either directly or by employing intermediate E. coli with two forms: a hybrid plasmid fused with IncN3 or a cotransfer with the helper plasmid, IncN3. Various mobile genetic elements, including ISKpn74, ISKpn14, IS26, ISShes11, ISAba11, and Tn3, are involved in the genetic transposition of diverse hybrid plasmids and the cotransfer process during the intra/interspecies transmission. IMPORTANCE Nowadays, the underlying mobilization mechanism and evolutionary processes of nonconjugative virulence or resistance plasmids in Klebsiella pneumoniae remain poorly understood. Our study revealed the high conjugation ability of IncN3 plasmid isolated from carbapenem-resistant K. pneumoniae and confirmed its capability to mobilize the nonconjugative virulence or resistance plasmids. The self-transferable IncN3 plasmid could facilitate the transmission of pathogenicity and genetic evolution of carbapenem-resistant and hypervirulent K. pneumoniae, including hv-CRKP (virulence plasmid obtained by carbapenem-resistant K. pneumoniae) and CR-hvKP (resistance plasmid obtained by hypervirulent K. pneumoniae), warranting further monitoring.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Escherichia coli/metabolismo , Humanos , Klebsiella pneumoniae/genética , Plasmídeos/genética , Virulência/genética , beta-Lactamases/genética
11.
Microbiol Spectr ; 10(4): e0032022, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35703555

RESUMO

Toxin-antitoxin (TA) modules containing a Gcn5-related N-acetyltransferase (GNAT) toxin domain regulate bacterial physiology under adverse environmental stresses. Multiple GNAT-ribbon-helix-helix domain (RHH) TA loci have been identified in single bacterial genomes. However, their diversity and interactions are still obscure. Our previous analysis showed that the GNAT toxin of Klebsiella pneumoniae, KacT, introduces antibiotic tolerance and the toxicity of GNAT is neutralized by KacA, an RHH antitoxin. We here present a phylogenetic analysis of GNAT toxins of more than 1,000 GNAT-RHH pairs detected in completely sequenced K. pneumoniae genomes, revealing that the GNAT toxins are diverse and grouped into four distinct clades. Overexpression of GNAT toxins representative of each of the four clades halts the cell growth of K. pneumoniae, while the coexpression of the cognate RHH antitoxin neutralizes GNAT toxicity. We also identify point mutations that inactivate the GNAT toxins. Moreover, we observe a cross-interaction between GNAT-RHH pairs encoded by different replicons, where a chromosomal toxin (KacT2) can be neutralized by its cognate RHH antitoxin (KacA2 on a chromosome) and another antitoxin (KacA3 on a plasmid). Finally, statistical analysis of the distribution of GNAT-RHH loci in K. pneumoniae strains shows pronounced deviation from random distribution within the same clades. Moreover, we also obtain statistically significant correlations between different clades, which we discuss in terms of the experimental results. IMPORTANCE Elucidating the roles of multifaceted GNAT-RHH TA loci is essential for understanding how these TAs interact among themselves. Recently, the reaction mechanisms and structures of several GNAT-RHH pairs have been reported. While bacterial strains can carry multiple GNAT-RHH loci with diverse origins, studies on the possible cross-interactions of these TA pairs are still limited. Here, we find that 1,000 predicted GNAT toxins of K. pneumoniae can be grouped into four distinct clades. The distributions of TA loci within these clades in K. pneumoniae strains are highly nonrandom, with the presence of a single locus of each clade per strain being highly overrepresented. Moreover, the toxicity of a GNAT toxin encoded by a chromosome was alleviated by a noncognate RHH antitoxin on a plasmid. These results might yield a profound understanding of the widespread GNAT-RHH TA pairs and the cross-interactions between noncognate TA pairs located on different replicons.


Assuntos
Antitoxinas , Toxinas Bacterianas , Acetiltransferases/genética , Antitoxinas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Klebsiella pneumoniae/genética , Filogenia
12.
Nucleic Acids Res ; 50(W1): W768-W773, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35524563

RESUMO

VRprofile2 is an updated pipeline that rapidly identifies diverse mobile genetic elements in bacterial genome sequences. Compared with the previous version, three major improvements were made. First, the user-friendly visualization could aid users in investigating the antibiotic resistance gene cassettes in conjunction with various mobile elements in the multiple resistance region with mosaic structure. VRprofile2 could compare the predicted mobile elements to the collected known mobile elements with similar architecture. A new mobilome indicator was proposed to give an overall estimation of the mobilome size in individual bacterial genomes. Second, the relationship between antibiotic resistance genes, mobile elements, and host strains would be efficiently examined with the aid of predicted strain's sequence typing, the incompatibility group and the transferability of plasmids. Finally, the updated back-end database, MobilomeDB2, now collected nearly a thousand active mobile elements retrieved from literature or based on prediction. The pre-computed results of the antibiotic resistance gene-carrying mobile elements of >5500 ESKAPEE genomes were also provided. We expect that VRprofile2 will provide better support for researchers interested in bacterial mobile elements and the dissemination of antibiotic resistance. VRprofile2 is freely available to all users without any login requirement at https://tool2-mml.sjtu.edu.cn/VRprofile.


Assuntos
Bactérias , Farmacorresistência Bacteriana , Plasmídeos , Antibacterianos/farmacologia , Bactérias/genética , Genes Bacterianos , Genoma Bacteriano
13.
Microbiol Res ; 257: 126975, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35093792

RESUMO

Streptomyces linear plasmids often contain an internal replication origin. In this study, a new replication origin was identified and confirmed in the 1.8-Mb plasmid pSCATT of Streptomyces cattleya DSM46488. The real-time qPCR results indicated that the copy number of pSCATT was one copy per chromosome. The identified replication origin oriC1-II was found to locate in the central region of pSCATT and was 2 kb in size. This replication origin consists of a protein-coding gene SCATT_p08010 with an unknown function and the upstream non-coding sequence. Deletion or disruption analysis of SCATT_p08010 or the upstream non-coding sequence revealed that both SCATT_p08010 and the non-coding sequence were essential for replication. However, the identified replication origin was shown to endow the plasmid with the ability to replicate in a circular model but not in a linear model in S. lividans. Interestingly, the knockout of the replication origin did not result in the curing of pSCATT, indicating that there might be other replication origins present in the mega-plasmid. The experimental validation of the central replication origin oriC1-II might be helpful for the investigation of the replication mechanism of the mega-plasmid and the genome evolution of Streptomyces.


Assuntos
Origem de Replicação , Streptomyces , Replicação do DNA , DNA Bacteriano/genética , Plasmídeos/genética , Origem de Replicação/genética , Streptomyces/genética
14.
Sci Data ; 9(1): 11, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058462

RESUMO

Bacterial integrative and conjugative elements (ICEs) are highly modular mobile genetic elements critical to the horizontal transfer of antibiotic resistance and virulence factor genes. To better understand and analyze the ongoing increase of ICEs, we developed an Integrative and Conjugative Element Ontology (ICEO) to represent the gene components, functional modules, and other information of experimentally verified ICEs. ICEO is aligned with the upper-level Basic Formal Ontology and reuses existing reliable ontologies. There are 31,081 terms, including 26,814 classes from 14 ontologies and 4128 ICEO-specific classes, representing the information of 271 known experimentally verified ICEs from 235 bacterial strains in ICEO currently and 311 predicted ICEs of 272 completely sequenced Klebsiella pneumoniae strains. Three ICEO use cases were illustrated to investigate complex joins of ICEs and their harboring antibiotic resistance or virulence factor genes by using SPARQL or DL query. ICEO has been approved as an Open Biomedical Ontology library ontology. It may be dedicated to facilitating systematical ICE knowledge representation, integration, and computer-assisted queries.


Assuntos
Ontologias Biológicas , Conjugação Genética , Elementos de DNA Transponíveis , Transferência Genética Horizontal , Klebsiella pneumoniae
15.
Interdiscip Sci ; 14(1): 80-88, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34664198

RESUMO

Levilactobacillus brevis are present in various environments, such as beer, fermented foods, silage, and animal host. Like other lactic acid bacteria, L. brevis might adopt the viable but nonculturable (VBNC) state under unfavorable conditions. The toxin-antitoxin (TA) system, known to regulate cell growth in response to environmental stresses, is found to control the dynamic of the VBNC state. Here, we investigate the type II TA locus prevalence and compare the TA diversity in L. brevis genomes. Using the TAfinder software, we identified a total of 273 putative type II TA loci in 110 replicons of 21 completely sequenced genomes. Genome size does not appear to correlate with the amount of putative type II TA in L. brevis. Besides, type II TA loci are distributed differently among the chromosomes and plasmids. The most prevalent toxin domain is MazF-like in the chromosomes, and RelE/RelE-like in the plasmids; while for antitoxin, Xre-like and Phd-like domains are the most common in the chromosomes and plasmids, respectively. We also observed a unique GNAT-like/ArsR-like TA pair that presents only in the L. brevis chromosome. Detection of 273 putative type II TA loci in 21 complete genomes of Levilactobacillus brevis.


Assuntos
Antitoxinas , Sistemas Toxina-Antitoxina , Animais , Antitoxinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plasmídeos/genética , Sistemas Toxina-Antitoxina/genética
16.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34657153

RESUMO

Bacterial type IV secretion systems (T4SSs) are versatile and membrane-spanning apparatuses, which mediate both genetic exchange and delivery of effector proteins to target eukaryotic cells. The secreted effectors (T4SEs) can affect gene expression and signal transduction of the host cells. As such, they often function as virulence factors and play an important role in bacterial pathogenesis. Nowadays, T4SE prediction tools have utilized various machine learning algorithms, but the accuracy and speed of these tools remain to be improved. In this study, we apply a sequence embedding strategy from a pre-trained language model of protein sequences (TAPE) to the classification task of T4SEs. The training dataset is mainly derived from our updated type IV secretion system database SecReT4 with newly experimentally verified T4SEs. An online web server termed T4SEfinder is developed using TAPE and a multi-layer perceptron (MLP) for T4SE prediction after a comprehensive performance comparison with several candidate models, which achieves a slightly higher level of accuracy than the existing prediction tools. It only takes about 3 minutes to make a classification for 5000 protein sequences by T4SEfinder so that the computational speed is qualified for whole genome-scale T4SEs detection in pathogenic bacteria. T4SEfinder might contribute to meet the increasing demands of re-annotating secretion systems and effector proteins in sequenced bacterial genomes. T4SEfinder is freely accessible at https://tool2-mml.sjtu.edu.cn/T4SEfinder_TAPE/.


Assuntos
Biologia Computacional , Idioma , Bactérias/genética , Genoma Bacteriano , Proteínas/genética , Sistemas de Secreção Tipo IV/genética
17.
Microbiol Res ; 252: 126852, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34454309

RESUMO

The SOS response-associated peptidase (SRAP) is an ancient protein superfamily in all domains of life. The mammalian SRAP was recently reported to covalently bind to the abasic sites (AP) in single stranded (ss) DNA to shield the chromosome integrity. YedK, the Escherichia coli SRAP, is not functionally characterized. Here we report the fortuitous pull-down of YedK from bacterial cell lysates by short (<20 bp) double stranded (ds) DNAs, further enrichment of YedK was observed when single stranded (ss) DNA was added. YedK can bind multiple DNA substrates, particularly with a high affinity to DNA duplex with single strand segment. As a SRAP protein, the involvement of YedK in SOS response was extensively examined, however yedK mutant of Escherichia coli showed no difference from the wild type strain upon the treatments with UV and various DNA damaging reagents, indicating its non-essentiality or redundancy in E. coli. Surprisingly, yedK mutants derived from Escherichia coli and Samonella enterica both showed an increased plasmid DNA transformation efficiency compared to the wild types. In accordance with this, induction of YedK effectively decreased the copy number of plasmid DNA. Site-directed mutagenesis of YedK demonstrated that residues involved in single strand DNA binding and cysteine residue at position 2 from N-terminus can discharge the repression of the plasmid transformation efficiency.


Assuntos
Replicação do DNA , DNA de Cadeia Simples , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Escherichia coli , Plasmídeos , Transformação Bacteriana , Replicação do DNA/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Plasmídeos/genética
18.
Genome Med ; 13(1): 119, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294113

RESUMO

BACKGROUND: Klebsiella pneumoniae, as a global priority pathogen, is well known for its capability of acquiring mobile genetic elements that carry resistance and/or virulence genes. Its virulence plasmid, previously deemed nonconjugative and restricted within hypervirulent K. pneumoniae (hvKP), has disseminated into classic K. pneumoniae (cKP), particularly carbapenem-resistant K. pneumoniae (CRKP), which poses alarming challenges to public health. However, the mechanism underlying its transfer from hvKP to CRKP is unclear. METHODS: A total of 28 sequence type (ST) 11 bloodstream infection-causing CRKP strains were collected from Ruijin Hospital in Shanghai, China, and used as recipients in conjugation assays. Transconjugants obtained from conjugation assays were confirmed by XbaI and S1 nuclease pulsed-field gel electrophoresis, PCR detection and/or whole-genome sequencing. The plasmid stability of the transconjugants was evaluated by serial culture. Genetically modified strains and constructed mimic virulence plasmids were employed to investigate the mechanisms underlying mobilization. The level of extracellular polysaccharides was measured by mucoviscosity assays and uronic acid quantification. An in silico analysis of 2608 plasmids derived from 814 completely sequenced K. pneumoniae strains available in GenBank was performed to investigate the distribution of putative helper plasmids and mobilizable virulence plasmids. RESULTS: A nonconjugative virulence plasmid was mobilized by the conjugative plasmid belonging to incompatibility group F (IncF) from the hvKP strain into ST11 CRKP strains under low extracellular polysaccharide-producing conditions or by employing intermediate E. coli strains. The virulence plasmid was mobilized via four modes: transfer alone, cotransfer with the conjugative IncF plasmid, hybrid plasmid formation due to two rounds of single-strand exchanges at specific 28-bp fusion sites or homologous recombination. According to the in silico analysis, 31.8% (242) of the putative helper plasmids and 98.8% (84/85) of the virulence plasmids carry the 28-bp fusion site. All virulence plasmids carry the origin of the transfer site. CONCLUSIONS: The nonconjugative virulence plasmid in ST11 CRKP strains is putatively mobilized from hvKP or E. coli intermediates with the help of conjugative IncF plasmids. Our findings emphasize the importance of raising public awareness of the rapid dissemination of virulence plasmids and the consistent emergence of hypervirulent carbapenem-resistant K. pneumoniae (hv-CRKP) strains.


Assuntos
Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Plasmídeos/genética , Carbapenêmicos/farmacologia , Biologia Computacional/métodos , Conjugação Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Anotação de Sequência Molecular , Polissacarídeos Bacterianos/biossíntese , Análise de Sequência de DNA , Virulência/genética , Sequenciamento Completo do Genoma , Resistência beta-Lactâmica
19.
Virulence ; 12(1): 1323-1333, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33970792

RESUMO

Virulence plasmids of hypervirulent Klebsiella pneumoniae (hvKp) have the potential to transfer to drug-resistant strains or integrate with other plasmids, facilitating the genome evolution of threatening pathogens. We conducted an in-depth analysis of the publicly available 156 complete genome sequences of hvKp together with a multi-region clinical cohort of 171 hvKp strains from China to provide evidence for the virulence plasmid evolution. Virulence plasmids were frequently detected in the ST23 and ST11 K. pneumoniae strains. Multidrug-resistant hvKp (MDR-hvKp) occupied a large proportion of hvKp, and the coexistence of virulence and resistance plasmids may be the major cause. Virulence plasmids commonly possessed multiple replicons, of which IncFIBK was the most prevalent (84.6%). We identified 49 IncFIBK alleles among 583 IncFIBK plasmids, and they could be divided into Clades I, II, and III. We further observed that conjugative and non-conjugative virulence plasmids could be distinguished by IncFIBK genetic diversity, and IncFIBK subtyping could also indirectly indicate a chimeric preference of conjugative virulence plasmids. On this basis, we developed an open-access web tool called KpVR for IncFIBK subtyping. In conclusion, the genetic diversity of IncFIBK virulence plasmids could be used for tracking the evolution of virulence plasmids, and further preventing the emergence of MDR-hvKp strains.


Assuntos
Enterobactina/análogos & derivados , Ácidos Hidroxâmicos , Klebsiella pneumoniae , Plasmídeos , Enterobactina/genética , Variação Genética , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Plasmídeos/genética , Virulência/genética
20.
mSphere ; 5(3)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461273

RESUMO

AbaR-type genomic islands (AbaRs) are prevalent and associated with multiple antimicrobial resistance in Acinetobacter baumannii AbaRs feature varied structural configurations involving different but closely related backbones with acquisition of diverse mobile genetic elements (MGEs) and antimicrobial resistance genes. This study aimed to understand the structural modulation patterns of AbaRs. A total of 442 intact AbaRs, including nonresistance but closely related islands, were mapped to backbones Tn6019, Tn6022, Tn6172/Tn6173, and AbGRI1-0 followed by alien sequence characterization. Genetic configurations were then examined and compared. The AbaRs fall into 53 genetic configurations, among which 26 were novel, including one Tn6019-type, nine Tn6022-type, three Tn6172/Tn6173-type, nine AbGRI1-type, and four new transposons that could not be mapped to the known backbones. The newly identified genetic configurations involved insertions of novel MGEs like ISAcsp2, ISAba42, ISAba17, and ISAba10, novel structural modulations driven by known MGEs such as ISCR2, Tn2006, and even another AbaR, and different backbone deletions. Recombination events in AbGRI1-type elements were also examined by identifying hybrid sequences from different backbones. Moreover, we found that the content and context features of AbaRs including the profiles of the MGEs driving the plasticity of these elements and the consequently acquired antimicrobial resistance genes, insertion sites, and clonal distribution displayed backbone-specific patterns. This study provides a comprehensive view of the genetic features of AbaRs.IMPORTANCE AbaR-type genomic islands (AbaRs) are well-known elements that can cause antimicrobial resistance in Acinetobacter baumannii These elements contain diverse and complex genetic configurations involving different but related backbones with acquisition of diverse mobile genetic elements and antimicrobial resistance genes. Understanding their structural diversity is far from complete. In this study, we performed a large-scale comparative analysis of AbaRs, including nonresistance but closely related islands. Our findings offered a comprehensive and interesting view of their genetic features, which allowed us to correlate the structural modulation signatures, antimicrobial resistance patterns, insertion loci, as well as host clonal distribution of these elements to backbone types. This study provides insights into the evolution of these elements, explains the association between their antimicrobial resistance gene profiles and clonal distribution, and could facilitate establishment of a more proper nomenclature than the term "AbaR" that has been variously used.


Assuntos
Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Ilhas Genômicas , Sequências Repetitivas Dispersas , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , DNA Bacteriano/genética , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...